Pouvoir calorifique inférieur (PCI) et supérieur (PCS)Les produits normaux d'une bonne combustion sont essentiellement du CO2 et de l'H2O. Juste après la réaction de combustion, cette eau issue du combustible se trouve à l'état gazeux dans les fumées. Notons que l'eau à l'état gazeux n'est pas visible, elle est transparente. D'ailleurs, l'air ambiant en contient toujours une certaine quantité. Imaginons que nous puissions réaliser une combustion parfaite d'un combustible, libérant ainsi le maximum d'énergie sous forme thermique (énergie qui était initialement contenue sous forme chimique dans le combustible). L'énergie libérée est transmise, d'une part, à la chaudière et, d'autre part, est contenue dans les fumées à température élevée. Si on peut aussi récupérer l'énergie contenue dans ces fumées en abaissant leur température jusqu'à la température ambiante, on dispose théoriquement de toute l'énergie que le combustible contenait initialement. Il s'agit du pouvoir calorifique. Néanmoins, comme évoqué ci-dessus, les fumées contiennent de l'H2O à l'état gazeux. En abaissant la température des fumées, l'eau peut passer à l'état liquide cédant ainsi une énergie, la chaleur de condensation ou énergie latente. Si on est capable de récupérer cette énergie, on parlera du pouvoir calorifique supérieur (PCS). Par contre, si, dans la phase de récupération de l'énergie des fumées, on ne sait pas la récupérer, alors on parlera de pouvoir calorifique inférieur (PCI). Le pouvoir calorifique supérieur est par définition supérieur au pouvoir calorifique inférieur (PCS > PCI). En effet, on a récupéré la chaleur latente de la vapeur d’eau contenue dans les fumées. Voici les valeurs de pouvoir calorifique pour les combustibles liés à la technologie des chaudières à condensation :
Dans le cas du gaz naturel ?On voit que l'on peut récupérer jusqu'à 10 % de rendement supplémentaire si on peut condenser la vapeur d'eau des fumées et récupérer parfaitement cette chaleur. On voit donc que le potentiel d'une telle technique pour le gaz naturel est substantiel. A l'heure actuelle, on trouve des chaudières condensation gaz pour toutes les gammes de puissance. Dans le cas du fuel ?La technique de la condensation est principalement utilisée dans les chaudières gaz. Il existe également des chaudières fuel à condensation, mais leur utilisation est actuellement moins répandue, pour trois raisons :
Température de condensation des fumées (point de rosée) de combustion du gaz et du fuel, en fonction de leur teneur en CO2.: pour les coefficients d'excès d'air typiques pour le gaz et le fioul, c'est-à-dire 1.2, la concentration en CO2 est de, respectivement, 10 et 13 % donnant une température de rosée d'approximativement 55 °C et 47.5 °C.
Notons cependant que les gros fabricants de chaudières ont quasiment tous développé des chaudières à condensation fonctionnant au fuel. Néanmoins, ils ne proposent pas toujours ces produits dans toutes les gammes de puissance. L'acier inoxydable de l'échangeur a été étudié pour résister aux condensats acides. Ainsi, l'existence d'un fuel à très faible teneur en souffre ("Gasoil Extra" avec une teneur en souffre inférieure à 50 ppm) officialisée par un arrêté royal publié le 23 octobre 02, peut ouvrir de nouvelles perspectives aux chaudières à condensation fonctionnant au fuel. Suivant la technologie de la chaudière à condensation au mazout, on est obligé de fonctionner avec un mazout Extra à faible teneur en Soufre ou, si la chaudière le permet, on peut fonctionner avec un mazout standard. Dans le cas du bois ?Certains fabricants de chaudières au bois proposent des chaudières à condensation. À l'heure actuelle, cela reste assez rare, mais cela existe. Manquant de retour et de références à ce sujet, nous ne donnerons plus d'information.
Que rapporte une chaudière à condensation par rapport à une chaudière traditionnelle ?Le gain énergétique réalisé grâce à une chaudière à condensation se situe à deux niveaux :
Pour comparer le rendement des chaudières à condensation et celui des chaudières classiques, il faut comparer leur rendement global annuel ou rendement saisonnier, qui prend en compte toutes les pertes de la chaudière (par les fumées, par rayonnement et d'entretien), en fonction de la charge réelle de la chaudière durant toute la saison de chauffe. Ce gain réel obtenu par une chaudière à condensation est difficile à estimer d'une manière générale, car il dépend de la température d'eau qui irrigue la chaudière et qui est évidemment variable (elle dépend de la courbe de chauffe choisie et donc du dimensionnement des émetteurs).
Besoin d'une température de retour la plus basse possible et émetteurs de chaleurPour obtenir les meilleurs rendements, il faut que la température des fumées soit la plus basse possible. Du coup, il faut une température de retour du circuit de distribution de chauffage la plus basse. Cela s'obtient par une bonne conception du circuit hydraulique, essentiellement, en travaillant avec une température de départ plus basse et des émetteurs de chaleur qui travaillent à basse température. On pense naturellement au chauffage par le sol (basé sur le rayonnement). Néanmoins, les radiateurs ou convecteurs basse température peuvent aussi convenir pour atteindre cet objectif. Rendement théorique utile des chaudières gaz et mazout à condensation en fonction de la température à laquelle on a pu descendre les fumées dans la chaudière : le coefficient d'excès d'air est pris égal à 1.2. On voit que le point d'inflexion où la chaudière au gaz commence à condenser se situe autour de 55 °C alors que ce point se déplace à 47.5 °C pour le mazout. Quelles sont les conclusions de ce dernier graphe :
Intérêt d'une chaudière à condensation pour améliorer une ancienne installation de chauffage ? Oui si régulation adaptée !Il y a-t-il un intérêt de placer une chaudière à condensation sur un réseau de radiateurs dimensionnés en régime 90°/70 °C ? En effet, si la température de retour est de 70 °C, alors la chaudière ne condensera pas ! Pourtant, il y a bien un intérêt à placer une chaudière à condensation :
Sur la première figure, il s'agit de l'évolution de la température glissante de retour en fonction de la température extérieure pour une installation conçue en régime 90°/70°(à une température de dimensionnement de - 10 °C) : on voit que le point de rosée pour le gaz et le mazout est obtenu à des températures extérieures supérieures à ~ - 10 °C et ~ - 4 °C, respectivement. Dans notre calcul, on a pris une température de retour limite à partir de laquelle commence la condensation de 5 °C inférieure à la température de rosée pour tenir compte de l'imperfection de l'échangeur de la chaudière. Sur base des conditions météorologiques rencontrées en moyenne (année standard), on voit sur la seconde figure que les chaudières gaz et mazout condensent sur une grande partie de la période de chauffe. En termes d'énergie, en faisant l'hypothèse que les besoins du bâtiment sont proportionnels à la température extérieure, on voit avec la troisième figure que la chaudière gaz à condensation condense 75 % du temps et la chaudière mazout approximativement 40 %.
Sur base des arguments suivants, le potentiel d'une chaudière à condensation sur une ancienne installation dimensionnée en régime 90°/70° est justifié pour le gaz naturel. Pour les installations au mazout, l'amélioration induite par la condensation est bel et bien présente, mais moins importante : ceci est dû à la température du point de rosée qui est plus basse pour le mazout. On voit au moyen des figures suivantes que la situation est encore plus favorable à la condensation en présence d'émetteurs dimensionnés en régime 70 °C/50 °C. Dans le cas de la chaudière au gaz, on peut potentiellement avoir une condensation quasi permanente de la chaudière. Pour le mazout, la condensation est aussi majoritairement présente. Par conséquent, pour s'assurer de l'efficacité des installations équipées de chaudières à condensation, il peut être intéressant de redimensionner l'installation en régime 70°/50 °C. C'est généralement possible, dans la mesure où, d'une part, les émetteurs des anciennes installations de chauffage sont souvent largement surdimensionnés en régime 90°/70 °C, et, d'autre part, que la rénovation d'une installation de chauffage va souvent de pair avec l'amélioration des performances de l'enveloppe (rénovation), ce qui réduit significativement la puissance nécessaire des émetteurs. Sur la première figure, il s'agit de l'évolution de la température glissante de retour en fonction de la température extérieure pour une installation conçue en régime 70°/50°(à une température de dimensionnement de - 10 °C) : on voit que le point de rosée pour le gaz et le mazout est obtenu à des températures extérieures supérieures à ~-10 °C et ~- 4 °C, respectivement. Dans notre calcul, on a pris une température de retour limite à partir de laquelle commence la condensation de 5 °C inférieure à la température de rosée pour tenir compte de l'imperfection de l'échangeur de la chaudière . Sur base des conditions météorologiques rencontrées en moyenne (année standard), on voit sur la seconde figure que les chaudières gaz et mazout condensent la majeure partie de la période de chauffe. En termes d'énergie, en faisant l'hypothèse que les besoins du bâtiment sont proportionnels à la température extérieure, on voit avec la dernière figure que la chaudière gaz à condensation condense 100 % du temps et la chaudière mazout approximativement 93 %. L'intérêt des chaudières à condensation démontré, il faut néanmoins savoir que le circuit hydraulique de distribution de chaleur devra être éventuellement modifié pour assurer une température de retour la plus faible à la chaudière. Influence de l'excès d'airL'excès d'air a une influence sur les performances d'une chaudière à condensation. En effet, plus l'excès d'air est important et plus la température de rosée diminue. Comme la température de retour du réseau de distribution de chaleur dépend de sa conception, mais aussi des conditions météorologiques, cette température de rosée devrait être la plus haute possible pour être certain que la chaudière condense efficacement le plus souvent. Autrement, le risque est d'avoir une température de fumée trop élevée et donc de l'eau qui reste à l'état de vapeur dans ces fumées. En conclusion, il faut que l'excès d'air soit le plus faible possible pour avoir une température de rosée la plus haute et de meilleures conditions de condensation. Rendement utile d'une chaudière gaz de type L en fonction de la température des fumées (fonction de la température de l'eau) et de l'excès d'air (λ = 1,3 équivaut à un excès d'air de 30 %). Remarque : ce schéma montre que les anciennes chaudières atmosphériques à condensation avaient de moins bonnes performances puisqu'elles fonctionnaient avec un excès d'air supérieur à 50 % (λ = 1,5). Gains sur le rendement saisonnierLe gain obtenu sur le rendement saisonnier et donc sur la facture énergétique en choisissant une chaudière à condensation plutôt qu'une chaudière traditionnelle haut rendement peut donc varier entre : 1 et 14 %. Si on compile les informations de l'ARGB pour le gaz et le résultat des programmes de simulation de certains fabricants, on peut dire que 6 .. 9 % d'économie sur la consommation annuelle est un ordre de grandeur réaliste pouvant être utilisé pour guider le choix de la nouvelle chaudière (voir peut-être un peu plus pour les meilleures installations).
Type d'échangeurLes chaudières à condensation actuelles sont composées de deux ou trois échangeurs en série. Ces échangeurs sont soit séparés sous une même jaquette, soit intégrés dans un ensemble monobloc. Le dernier échangeur sur le circuit des fumées (ou la dernière partie de l'échangeur monobloc) est appelé "condenseur". C'est dans ce dernier que les fumées doivent céder leur chaleur latente. C'est donc également au niveau de ce dernier que se raccorde le retour d'eau à température la plus basse possible. Cet échangeur est conçu en un matériau supportant la condensation sans risque de corrosion (acier inox, fonte d'aluminium). Il est également possible d'utiliser un condenseur séparé, rajouté à une chaudière traditionnelle, de manière à en augmenter son rendement. Cela est en principe possible pour toute chaudière gaz et fioul existante. C'est la seule solution si on veut exploiter la condensation avec des chaudières de plus d'un MW. Échangeurs-condenseurs s'adaptant à une chaudière traditionnelle. Pour obtenir le meilleur rendement de l'échangeur-condenseur, il est important que l'évacuation des fumées se fasse dans le même sens que l'écoulement des condensats, c'est-à-dire vers le bas. Dans le cas contraire, les fumées s'élevant risqueraient de revaporiser les condensats, ce qui ferait perdre l'avantage de la condensation. Évacuation des fumées dans une chaudière à condensation, dans le sens de l'écoulement des condensats. Le rendement de combustion obtenu dépend entre autres de la qualité de l'échangeur. Un bon échangeur permettra d'obtenir des fumées dont la température à la sortie de la chaudière est au maximum de 5 °C supérieure à la température de l'eau de retour. Attention, sur les plus mauvaises chaudières à condensation, cette différence de température peut aller jusqu'à 15 °C. Circuits retourCertaines chaudières comportent deux branchements de retour : un retour "basse température" au niveau du condenseur et un retour "haute température" au niveau du premier échangeur. Cette configuration permet l'utilisation d'une chaudière à condensation même lorsqu'une partie des utilisateurs demandent une température d'eau élevée (production d'eau chaude sanitaire, batteries à eau chaude, circuits de radiateurs à différents niveaux de température, ...). Les circuits qui leur sont propres sont alors raccordés du côté "haute température", les circuits pouvant fonctionner en basse température (circuits radiateurs basse température, chauffage par le sol, ...) étant dédiés au retour "basse température". Il faut toutefois faire attention : le retour "froid" reste le retour principal de la chaudière. Le retour chaud by-passe une partie de la surface d’échange. Il est donc important de maintenir un rapport (60% min, 40% max) entre le retour froid et le retour chaud ! Si l’on place la production ECS sur le retour "chaud" , tout l’été, la chaudière va fonctionner dans de mauvaises conditions, car il n’y a pas de retour "froid". Il est donc préférable dans ce cas de surdimensionner la production ECS, de manière à revenir plus froid sur la chaudière, et n’utiliser qu’un seul retour, à savoir le retour "froid" dans ce cas ! Type de brûleurEn gros, en fonction du type de brûleur, on retrouve trois types de chaudière à condensation :
Type d'alimentation en airDans certaines chaudières avec brûleur à prémélange, l'air comburant est aspiré le long des parois du foyer avant d'être mélangé au gaz. Il est ainsi préchauffé en récupérant la perte du foyer. Les pertes vers l'ambiance sont dès lors minimes. Cette configuration liée à une régulation qui fait chuter directement la température de la chaudière à l'arrêt et à un brûleur modulant fonctionnant quasi en permanence en période de chauffe rend inutile la présence d'isolation dans la jaquette de la chaudière. Ces chaudières peuvent être équipées d'un système de combustion étanche (ou à ventouse) dans lequel l'air comburant est directement aspiré à l'extérieur du bâtiment. IrrigationIl existe de trois types de chaudière, en fonction du degré d'irrigation minimum exigé :
Le circuit hydraulique qui sera associé à la chaudière à condensation dépend des exigences suivantes :
Dans les deux cas de figure, il est impératif d’avoir une régulation performante qui régule la température de départ chaudière en fonction des besoins et /ou de la température extérieure, afin d’optimiser les performances chaudières et limiter les pertes de distribution. Pertes vers l'ambiance, pertes à l'arrêt et isolationCertaines nouvelles chaudières gaz à condensation se caractérisent par l'absence d'isolation dans la jaquette. Et pourtant, leurs pertes vers l'ambiance sont très faibles. Il y a plusieurs raisons à cela :
Exemples de chaudière à condensation
Chaudière fioul à condensation avec brûleur à air pulsé. Configuration des échangeursDe manière générale, on distingue deux types de configuration d’échangeur :
Les échangeurs de chaleur sur l’eau de chauffage Lorsque l’échangeur est prévu pour transmettre la chaleur de condensation à l’eau du circuit hydraulique du système de chauffage, on distingue encore deux sous-familles. Les condenseurs sont :
Chaudière fuel à condensation (source Viessmann). La condensation dans ce type de chaudière n’est pas optimale sachant qu’il faut un retour froid de l’eau de chauffage en dessous de 47 °C afin d’atteindre aisément le point de rosée. On rappelle qu’à titre de comparaison, le point de rosée pour le gaz est de l’ordre de 57 °C. Méthode alternative : Préchauffage de l’air de combustionContrairement aux chaudières équipées d’échangeur(s) de chaleur sur l’eau de chauffage, les chaudières à préchauffage de l’air de combustion sont destinées à exploiter la chaleur de condensation des fumées de combustion pour préchauffer l’air frais. Dans ce type de chaudière, l’échangeur de chaleur entre les fumées et l’eau de chauffage n’est pas dimensionné pour condenser. L’avantage d’un tel système est que la chaudière condense pratiquement en permanence puisque l’air frais pris à l’extérieur et nécessaire à la combustion est en Belgique très frais (Tex moyenne annuelle est de l’ordre de 6.5 °C). Le taux de condensation est donc maximal en hiver, lorsque la chaudière fonctionne à pleine charge. En pratique :
Chaudière fuel à condensation type échangeur à air (source : Kroll) Qualité du fuelJusqu’il y a peu, l’utilisation du fuel dans la technique de condensation était difficile sachant que sa contenance en soufre pouvait atteindre 1 000 ppm (>1 000 mg/kg ou 0.2 % selon la NBN T 52-716). Une telle présence de soufre dans le fuel donnait immanquablement des produits de combustion composés de quantités importantes d’oxyde de soufre (SO2 et S03). En présence d’eau (lors de la condensation de la vapeur d’eau), de l’acide sulfureux H2SO3 et de l’acide sulfurique H2SO4 sont formés en même quantité. La teneur en soufre des fuels de chauffage, ces dernières années, a été abaissée à 50 ppm (gazoil extra : < 50 ppm selon la NBN EN 59590). L’adoption de cette disposition a permis l’ouverture du marché des chaudières à condensation au fuel. Suivant la teneur en soufre du fuel, des dispositions particulières seront à prendre au niveau de l’échangeur de chaleur permettant la condensation comme le montre le tableau suivant :
Traitement des condensatsLa quantité de condensats formée lors du fonctionnement d’une chaudière à condensation est loin d’être négligeable. Le tableau suivant donne des valeurs théoriques de quantité de condensats :
En pratique, la quantité de condensats peut varier en fonction principalement :
Mais elle peut aussi varier en fonction du dimensionnement des échangeurs, de son efficacité, … Le graphique suivant donne une idée du taux de condensation dans les chaudières :
La quantité de condensats à récupérer est plus importante au niveau du gaz par rapport au fuel. L’avantage de travailler avec du gaz est donc double :
Cependant, lorsqu’il n’est pas possible d’utiliser le gaz (pas de réseau à proximité), le mazout s’impose avec une contrainte supplémentaire que la neutralisation des condensats est requise en fonction de la qualité du fuel comme l’indique le tableau suivant :
Lorsqu’on dépasse une certaine puissance de chaudière, les différents constructeurs ne proposent plus dans leur gamme des échangeurs à condensation intégrés, mais des condenseurs séparés et placés derrière à la sortie des gaz de combustions. Cette configuration est intéressante : > En conception lorsque la puissance de chauffe souhaitée est supérieure à 1 500 kW ;
> En rénovation lorsque les chaudières à haut rendement sont encore en bon état de marche.
ConceptionSuivant le constructeur, les condenseurs séparés peuvent travailler :
Quel que soit le type de combustible, le condenseur séparé sera toujours conçu en inox de manière à bien résister à l’agressivité des fumées de combustion.
Puissance des condenseursLa puissance d’un condenseur externe associé à une chaudière classique est de l’ordre de 10 % de la puissance de la chaudière proprement dite. En effet, en parlant en termes de puissance, la chaleur résiduelle contenue dans les fumées de combustion ne dépasse pas les 10 voire 11 % de la chaleur que la flamme a donnée à l’échangeur de la chaudière. Attention, ces 10 % de puissance correspondent à un doublement de la surface d’échange total, car la température d’échange est beaucoup plus faible que dans la chaudière elle-même !!
Côté hydrauliqueD’un point de vue hydraulique, la configuration la plus souvent retrouvée est celle où le condenseur est placé en amont de la chaudière sur le retour d’eau chaude. En fonction de la température de retour du circuit de distribution, la vanne de "by-pass" de l’échangeur externe est plus ou moins ouverte :
Seule une partie du débit passe dans le condenseur externe étant donné que l’on ne peut récupérer que de l’ordre de 11 % de l’énergie de condensation. Faire passer 100 % du débit augmenterait de façon inutile la résistance hydraulique de l’ensemble chaudière condenseur et dans la consommation électrique. Côté fuméeD’un point de vue du parcours des fumées, l’échangeur à condensation externe est placé en série et en aval de la chaudière HR. Il reçoit les fumées de combustion extraites de la chaudière HR. Les températures à la sortie de la chaudière doivent être les plus basses possible, mais toutefois au-dessus du point de rosée afin d’éviter la condensation.
Une chaudière à condensation n'a ses performances optimales que si elle est alimentée avec une eau à basse température, en tout cas inférieure à la température de rosée des fumées (de 53 à 58 °C pour les fumées issues de la combustion du gaz naturel, environ 45 °C pour les chaudières au mazout). Plus la température d'eau de retour est froide, plus la quantité de fumée condensée est importante et meilleur est le rendement. La configuration des circuits de distribution doit donc être adaptée en conséquence avec comme principes :
Cumul imaginaire des recyclages d'eau chaude possibles vers la chaudière. Situations à éviter.
Les produits de combustion issus d'une chaudière à condensation sont saturés en vapeur d'eau dont une partie va se condenser sur les parois de la cheminée. Cela exclut une évacuation par une cheminée traditionnelle en maçonnerie, car l'humidité provoquerait de graves dommages au bâtiment. De plus, la température trop froide créé une dépression naturelle. Des solutions particulières ont donc été mises au point pour évacuer les produits de combustion des chaudières à condensation. On rencontre ainsi principalement les deux techniques suivantes :
Notons qu'il existe un agrément technique concernant les conduits de cheminée utilisables en combinaison avec une chaudière à condensation. Seuls ceux-ci peuvent être choisis. En principe, dans une chaudière à condensation la température des fumées est supérieure à la température de l'eau entrant dans la chaudière d'environ 5 °C. La température des fumées ne peut donc jamais dépasser 110 °C qui est la limite de fonctionnement d'une chaudière. Cependant pour pallier à un défaut de la régulation de cette dernière, un thermostat de sécurité coupant la chaudière si la température des fumées dépasse 120 °C doit être prévu dans les raccordements vers la cheminée en matériau synthétique. Il est important aussi de signaler que l'on ne peut raccorder sur un même conduit de cheminée, une chaudière traditionnelle et une chaudière à condensation. Notons également qu'il existe des chaudières à condensation à combustion étanche (dites "à ventouse") dont l'alimentation en air et l'évacuation des fumées se font par deux conduits concentriques (l'air est aspiré au centre et les fumées rejetées par le conduit extérieur). Une telle configuration est possible jusqu'à une puissance de 1 000 kW en conduit vertical et 160 kW en conduit horizontal. Chaudières raccordées à un système de combustion étanche (à "ventouse"). Pour plus d'information concernant la conception des cheminées, cliquez ici !
À l'heure actuelle, il n'existe pas de normes ou de prescription en vigueur pour l'évacuation des condensats. De manière générale, les condensats sont évacués vers l'égout au moyen d'un conduit. La première figure montre l'évacuation des condensats vers les égouts, la deuxième figure montre la face isolée arrière d'une chaudière à condensation au gaz avec son tuyau d'évacuation des fumées et son conduit d'évacuation des condensats (en blanc), tandis que la dernière figure montre la partie inférieure du conduit de cheminée munie d'un conduit d'évacuation des condensats. En régime permanent, une chaudière gaz à condensation de 250 kW produit en moyenne environ 14 litres/h de condensat. Ces condensats pour le gaz naturel sont légèrement acides (H2O + CO2). Le degré d'acidité est du même ordre de grandeur que celui de l'eau de pluie (pH : 4 .. 4,5). De plus, l'acidité de ceux-ci est souvent compensée par le caractère plutôt basique des eaux ménagères. Ceci explique qu'il ne soit pas obligatoire de traiter les condensats avant leur évacuation à l'égout. Pour les grandes installations où la production de condensat devient importante devant la quantité d'eau domestique, il peut être judicieux de traiter les condensats avant de les évacuer. Graphe représentant différents niveaux d'acidité et comparaison avec les condensats des chaudières mazout et gaz. Dans le cas du mazout, le niveau d'acidité est plus important et est dû à la présence plus importante du soufre au sein du combustible. Le mazout extra, pauvre en Soufre, permet de limiter l'acidité. Dans ce cas de figure, les remarques pour les condensats des chaudières gaz peuvent être appliqué pour la chaudière au mazout extra. Dans le cas du mazout standard, nous conseillons le lecteur de clarifier la situation avec l'installateur ou le bureau d'études. En effet, dans les grandes installations (Pn > ~100 kW), une neutralisation des condensats pourrait s'avérer nécessaire, par exemple, dans le cas d'une utilisation continue de la chaudières (ex. piscine) qui occasionnerait une plus grande production de condensat. Pour relever le pH des condensats, on peut utiliser un bac de neutralisation équipé de filtres de charbon actif : les filtres devront être remplacés de manière périodique pour maintenir l'efficacité. Dans le cas d'une chaufferie en toiture, il est recommandé de ne pas faire couler les condensats sur la toiture ou directement dans les gouttières (légère acidité, risque de gel et de bouchage des évacuations). Un conduit en matière synthétique raccordé directement à l'égout est indiqué. |